54.7.78 problem 1687 (book 6.96)

Internal problem ID [12927]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 6, non-linear second order
Problem number : 1687 (book 6.96)
Date solved : Wednesday, October 01, 2025 at 02:46:17 AM
CAS classification : [[_Emden, _Fowler], [_2nd_order, _with_linear_symmetries]]

\begin{align*} x^{4} y^{\prime \prime }+a^{2} y^{n}&=0 \end{align*}
Maple
ode:=x^4*diff(diff(y(x),x),x)+a^2*y(x)^n = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ \text {No solution found} \]
Mathematica
ode=a^2*y[x]^n + x^4*D[y[x],{x,2}] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 

Not solved

Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
n = symbols("n") 
y = Function("y") 
ode = Eq(a**2*y(x)**n + x**4*Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : solve: Cannot solve a**2*y(x)**n + x**4*Derivative(y(x), (x, 2))