Internal
problem
ID
[12947]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
6,
non-linear
second
order
Problem
number
:
1710
(book
6.119)
Date
solved
:
Wednesday, October 01, 2025 at 02:46:51 AM
CAS
classification
:
[[_2nd_order, _missing_x]]
ode:=diff(diff(y(x),x),x)*y(x)-diff(y(x),x)^2-(-1+a*y(x))*diff(y(x),x)+2*a^2*y(x)^2-2*b^2*y(x)^3+a*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=a*y[x] + 2*a^2*y[x]^2 - 2*b^2*y[x]^3 - (-1 + a*y[x])*D[y[x],x] - D[y[x],x]^2 + y[x]*D[y[x],{x,2}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") y = Function("y") ode = Eq(2*a**2*y(x)**2 + a*y(x) - 2*b**2*y(x)**3 - (a*y(x) - 1)*Derivative(y(x), x) + y(x)*Derivative(y(x), (x, 2)) - Derivative(y(x), x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE a*y(x)/2 - sqrt(9*a**2*y(x)**2 + 2*a*y(x) - 8*b**2*y(x)**3 + 4*y(x)*Derivative(y(x), (x, 2)) + 1)/2 + Derivative(y(x), x) - 1/2 cannot be solved by the factorable group method