Internal
problem
ID
[12948]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
6,
non-linear
second
order
Problem
number
:
1711
(book
6.120)
Date
solved
:
Wednesday, October 01, 2025 at 02:47:13 AM
CAS
classification
:
[[_2nd_order, _missing_x]]
ode:=diff(diff(y(x),x),x)*y(x)-diff(y(x),x)^2+(-1+a*y(x))*diff(y(x),x)-y(x)*(1+y(x))*(b^2*y(x)^2-a^2) = 0; dsolve(ode,y(x), singsol=all);
ode=-(y[x]*(1 + y[x])*(-a^2 + b^2*y[x]^2)) + (-1 + a*y[x])*D[y[x],x] - D[y[x],x]^2 + y[x]*D[y[x],{x,2}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Not solved
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") y = Function("y") ode = Eq((a**2 - b**2*y(x)**2)*(y(x) + 1)*y(x) + (a*y(x) - 1)*Derivative(y(x), x) + y(x)*Derivative(y(x), (x, 2)) - Derivative(y(x), x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE -a*y(x)/2 - sqrt(5*a**2*y(x)**2 + 4*a**2*y(x) - 2*a*y(x) - 4*b**2*y(x)**4 - 4*b**2*y(x)**3 + 4*y(x)*Derivative(y(x), (x, 2)) + 1)/2 + Derivative(y(x), x) + 1/2 cannot be solved by the factorable group method