Internal
problem
ID
[12949]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
6,
non-linear
second
order
Problem
number
:
1712
(book
6.121)
Date
solved
:
Friday, October 03, 2025 at 03:50:58 AM
CAS
classification
:
[[_2nd_order, _reducible, _mu_xy]]
ode:=diff(diff(y(x),x),x)*y(x)-diff(y(x),x)^2+(tan(x)+cot(x))*y(x)*diff(y(x),x)+(cos(x)^2-n^2*cot(x)^2)*y(x)^2*ln(y(x)) = 0; dsolve(ode,y(x), singsol=all);
ode=(Cos[x]^2 - n^2*Cot[x]^2)*Log[y[x]]*y[x]^2 + (Cot[x] + Tan[x])*y[x]*D[y[x],x] - D[y[x],x]^2 + y[x]*D[y[x],{x,2}] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") n = symbols("n") y = Function("y") ode = Eq((-n**2/tan(x)**2 + cos(x)**2)*y(x)**2*log(y(x)) + (tan(x) + 1/tan(x))*y(x)*Derivative(y(x), x) + y(x)*Derivative(y(x), (x, 2)) - Derivative(y(x), x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out