54.7.192 problem 1814 (book 6.223)

Internal problem ID [13041]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 6, non-linear second order
Problem number : 1814 (book 6.223)
Date solved : Wednesday, October 01, 2025 at 02:57:46 AM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} \left (b +a \sin \left (y\right )^{2}\right ) y^{\prime \prime }+a {y^{\prime }}^{2} \cos \left (y\right ) \sin \left (y\right )+A y \left (c +a \sin \left (y\right )^{2}\right )&=0 \end{align*}
Maple. Time used: 0.077 (sec). Leaf size: 140
ode:=(b+a*sin(y(x))^2)*diff(diff(y(x),x),x)+a*diff(y(x),x)^2*cos(y(x))*sin(y(x))+A*y(x)*(c+a*sin(y(x))^2) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} \sqrt {2}\, \int _{}^{y}\frac {b +a \sin \left (\textit {\_a} \right )^{2}}{\sqrt {-\left (b +a \sin \left (\textit {\_a} \right )^{2}\right ) \left (A a \sin \left (\textit {\_a} \right )^{2}-2 A a \textit {\_a} \cos \left (\textit {\_a} \right ) \sin \left (\textit {\_a} \right )+\textit {\_a}^{2} \left (a +2 c \right ) A -2 c_1 \right )}}d \textit {\_a} -x -c_2 &= 0 \\ -\sqrt {2}\, \int _{}^{y}\frac {b +a \sin \left (\textit {\_a} \right )^{2}}{\sqrt {-\left (b +a \sin \left (\textit {\_a} \right )^{2}\right ) \left (A a \sin \left (\textit {\_a} \right )^{2}-2 A a \textit {\_a} \cos \left (\textit {\_a} \right ) \sin \left (\textit {\_a} \right )+\textit {\_a}^{2} \left (a +2 c \right ) A -2 c_1 \right )}}d \textit {\_a} -x -c_2 &= 0 \\ \end{align*}
Mathematica. Time used: 1.039 (sec). Leaf size: 470
ode=A*(c + a*Sin[y[x]]^2)*y[x] + a*Cos[y[x]]*Sin[y[x]]*D[y[x],x]^2 + (b + a*Sin[y[x]]^2)*D[y[x],{x,2}] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}-\frac {\sqrt {\cos (2 K[2]) a-a-2 b}}{\sqrt {c_1+2 \int _1^{K[2]}(a A K[1]+2 A c K[1]-a A \cos (2 K[1]) K[1])dK[1]}}dK[2]\&\right ][x+c_2]\\ y(x)&\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}\frac {\sqrt {\cos (2 K[3]) a-a-2 b}}{\sqrt {c_1+2 \int _1^{K[3]}(a A K[1]+2 A c K[1]-a A \cos (2 K[1]) K[1])dK[1]}}dK[3]\&\right ][x+c_2]\\ y(x)&\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}-\frac {\sqrt {\cos (2 K[2]) a-a-2 b}}{\sqrt {2 \int _1^{K[2]}(a A K[1]+2 A c K[1]-a A \cos (2 K[1]) K[1])dK[1]-c_1}}dK[2]\&\right ][x+c_2]\\ y(x)&\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}-\frac {\sqrt {\cos (2 K[2]) a-a-2 b}}{\sqrt {c_1+2 \int _1^{K[2]}(a A K[1]+2 A c K[1]-a A \cos (2 K[1]) K[1])dK[1]}}dK[2]\&\right ][x+c_2]\\ y(x)&\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}\frac {\sqrt {\cos (2 K[3]) a-a-2 b}}{\sqrt {2 \int _1^{K[3]}(a A K[1]+2 A c K[1]-a A \cos (2 K[1]) K[1])dK[1]-c_1}}dK[3]\&\right ][x+c_2]\\ y(x)&\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}\frac {\sqrt {\cos (2 K[3]) a-a-2 b}}{\sqrt {c_1+2 \int _1^{K[3]}(a A K[1]+2 A c K[1]-a A \cos (2 K[1]) K[1])dK[1]}}dK[3]\&\right ][x+c_2] \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
A = symbols("A") 
a = symbols("a") 
b = symbols("b") 
c = symbols("c") 
y = Function("y") 
ode = Eq(A*(a*sin(y(x))**2 + c)*y(x) + a*sin(y(x))*cos(y(x))*Derivative(y(x), x)**2 + (a*sin(y(x))**2 + b)*Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out