54.7.193 problem 1815 (book 6.224)
Internal
problem
ID
[13042]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
6,
non-linear
second
order
Problem
number
:
1815
(book
6.224)
Date
solved
:
Wednesday, October 01, 2025 at 02:58:27 AM
CAS
classification
:
[[_2nd_order, _missing_x]]
\begin{align*} h \left (y\right ) y^{\prime \prime }+a h \left (y\right ) {y^{\prime }}^{2}+j \left (y\right )&=0 \end{align*}
✓ Maple. Time used: 0.072 (sec). Leaf size: 99
ode:=h(y(x))*diff(diff(y(x),x),x)+a*h(y(x))*diff(y(x),x)^2+j(y(x)) = 0;
dsolve(ode,y(x), singsol=all);
\begin{align*}
\int _{}^{y}\frac {{\mathrm e}^{2 \textit {\_b} a}}{\sqrt {{\mathrm e}^{2 \textit {\_b} a} \left (-2 \int \frac {{\mathrm e}^{2 \textit {\_b} a} j \left (\textit {\_b} \right )}{h \left (\textit {\_b} \right )}d \textit {\_b} +c_1 \right )}}d \textit {\_b} -x -c_2 &= 0 \\
-\int _{}^{y}\frac {{\mathrm e}^{2 \textit {\_b} a}}{\sqrt {{\mathrm e}^{2 \textit {\_b} a} \left (-2 \int \frac {{\mathrm e}^{2 \textit {\_b} a} j \left (\textit {\_b} \right )}{h \left (\textit {\_b} \right )}d \textit {\_b} +c_1 \right )}}d \textit {\_b} -x -c_2 &= 0 \\
\end{align*}
✓ Mathematica. Time used: 0.347 (sec). Leaf size: 362
ode=j[y[x]] + a*h[y[x]]*D[y[x],x]^2 + h[y[x]]*D[y[x],{x,2}] == 0;
ic={};
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
\begin{align*} y(x)&\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}-\frac {e^{a K[2]}}{\sqrt {c_1+2 \int _1^{K[2]}-\frac {e^{2 a K[1]} j(K[1])}{h(K[1])}dK[1]}}dK[2]\&\right ][x+c_2]\\ y(x)&\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}\frac {e^{a K[3]}}{\sqrt {c_1+2 \int _1^{K[3]}-\frac {e^{2 a K[1]} j(K[1])}{h(K[1])}dK[1]}}dK[3]\&\right ][x+c_2]\\ y(x)&\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}-\frac {e^{a K[2]}}{\sqrt {2 \int _1^{K[2]}-\frac {e^{2 a K[1]} j(K[1])}{h(K[1])}dK[1]-c_1}}dK[2]\&\right ][x+c_2]\\ y(x)&\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}-\frac {e^{a K[2]}}{\sqrt {c_1+2 \int _1^{K[2]}-\frac {e^{2 a K[1]} j(K[1])}{h(K[1])}dK[1]}}dK[2]\&\right ][x+c_2]\\ y(x)&\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}\frac {e^{a K[3]}}{\sqrt {2 \int _1^{K[3]}-\frac {e^{2 a K[1]} j(K[1])}{h(K[1])}dK[1]-c_1}}dK[3]\&\right ][x+c_2]\\ y(x)&\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}\frac {e^{a K[3]}}{\sqrt {c_1+2 \int _1^{K[3]}-\frac {e^{2 a K[1]} j(K[1])}{h(K[1])}dK[1]}}dK[3]\&\right ][x+c_2] \end{align*}
✗ Sympy
from sympy import *
x = symbols("x")
a = symbols("a")
y = Function("y")
j = Function("j")
h = Function("h")
ode = Eq(a*h(y(x))*Derivative(y(x), x)**2 + h(y(x))*Derivative(y(x), (x, 2)) + j(y(x)),0)
ics = {}
dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE -sqrt(-(Derivative(y(x), (x, 2)) + j(y(x))/h(y(x)))/a) + Derivative(y(x), x) cannot be solved by the factorable group method