54.7.193 problem 1815 (book 6.224)

Internal problem ID [13042]
Book : Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section : Chapter 6, non-linear second order
Problem number : 1815 (book 6.224)
Date solved : Wednesday, October 01, 2025 at 02:58:27 AM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} h \left (y\right ) y^{\prime \prime }+a h \left (y\right ) {y^{\prime }}^{2}+j \left (y\right )&=0 \end{align*}
Maple. Time used: 0.072 (sec). Leaf size: 99
ode:=h(y(x))*diff(diff(y(x),x),x)+a*h(y(x))*diff(y(x),x)^2+j(y(x)) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} \int _{}^{y}\frac {{\mathrm e}^{2 \textit {\_b} a}}{\sqrt {{\mathrm e}^{2 \textit {\_b} a} \left (-2 \int \frac {{\mathrm e}^{2 \textit {\_b} a} j \left (\textit {\_b} \right )}{h \left (\textit {\_b} \right )}d \textit {\_b} +c_1 \right )}}d \textit {\_b} -x -c_2 &= 0 \\ -\int _{}^{y}\frac {{\mathrm e}^{2 \textit {\_b} a}}{\sqrt {{\mathrm e}^{2 \textit {\_b} a} \left (-2 \int \frac {{\mathrm e}^{2 \textit {\_b} a} j \left (\textit {\_b} \right )}{h \left (\textit {\_b} \right )}d \textit {\_b} +c_1 \right )}}d \textit {\_b} -x -c_2 &= 0 \\ \end{align*}
Mathematica. Time used: 0.347 (sec). Leaf size: 362
ode=j[y[x]] + a*h[y[x]]*D[y[x],x]^2 + h[y[x]]*D[y[x],{x,2}] == 0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}-\frac {e^{a K[2]}}{\sqrt {c_1+2 \int _1^{K[2]}-\frac {e^{2 a K[1]} j(K[1])}{h(K[1])}dK[1]}}dK[2]\&\right ][x+c_2]\\ y(x)&\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}\frac {e^{a K[3]}}{\sqrt {c_1+2 \int _1^{K[3]}-\frac {e^{2 a K[1]} j(K[1])}{h(K[1])}dK[1]}}dK[3]\&\right ][x+c_2]\\ y(x)&\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}-\frac {e^{a K[2]}}{\sqrt {2 \int _1^{K[2]}-\frac {e^{2 a K[1]} j(K[1])}{h(K[1])}dK[1]-c_1}}dK[2]\&\right ][x+c_2]\\ y(x)&\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}-\frac {e^{a K[2]}}{\sqrt {c_1+2 \int _1^{K[2]}-\frac {e^{2 a K[1]} j(K[1])}{h(K[1])}dK[1]}}dK[2]\&\right ][x+c_2]\\ y(x)&\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}\frac {e^{a K[3]}}{\sqrt {2 \int _1^{K[3]}-\frac {e^{2 a K[1]} j(K[1])}{h(K[1])}dK[1]-c_1}}dK[3]\&\right ][x+c_2]\\ y(x)&\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}\frac {e^{a K[3]}}{\sqrt {c_1+2 \int _1^{K[3]}-\frac {e^{2 a K[1]} j(K[1])}{h(K[1])}dK[1]}}dK[3]\&\right ][x+c_2] \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
y = Function("y") 
j = Function("j") 
h = Function("h") 
ode = Eq(a*h(y(x))*Derivative(y(x), x)**2 + h(y(x))*Derivative(y(x), (x, 2)) + j(y(x)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE -sqrt(-(Derivative(y(x), (x, 2)) + j(y(x))/h(y(x)))/a) + Derivative(y(x), x) cannot be solved by the factorable group method