55.2.38 problem 38

Internal problem ID [13264]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 1, section 1.2. Riccati Equation. 1.2.2. Equations Containing Power Functions
Problem number : 38
Date solved : Wednesday, October 01, 2025 at 04:53:45 AM
CAS classification : [_rational, _Riccati]

\begin{align*} x y^{\prime }+a_{3} x y^{2}+a_{2} y+a_{1} x +a_{0}&=0 \end{align*}
Maple. Time used: 0.032 (sec). Leaf size: 403
ode:=x*diff(y(x),x)+a__3*x*y(x)^2+a__2*y(x)+a__1*x+a__0 = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = -\frac {4 \left (a_{1}^{3} a_{3} \left (a_{3} a_{0} -a_{2} \sqrt {-a_{1} a_{3}}\right ) \operatorname {KummerM}\left (\frac {\sqrt {-a_{1} a_{3}}\, a_{0} +a_{1} \left (a_{2} +2\right )}{2 a_{1}}, a_{2} +1, 2 x \sqrt {-a_{1} a_{3}}\right )-\frac {c_1 \left (a_{0}^{2} a_{3} +a_{1} a_{2}^{2}\right ) \operatorname {KummerU}\left (\frac {\sqrt {-a_{1} a_{3}}\, a_{0} +a_{1} \left (a_{2} +2\right )}{2 a_{1}}, a_{2} +1, 2 x \sqrt {-a_{1} a_{3}}\right )}{4}+a_{1}^{3} a_{3} \left (a_{2} \sqrt {-a_{1} a_{3}}+a_{3} a_{0} \right ) \operatorname {KummerM}\left (\frac {\sqrt {-a_{1} a_{3}}\, a_{0} +a_{1} a_{2}}{2 a_{1}}, a_{2} +1, 2 x \sqrt {-a_{1} a_{3}}\right )+\frac {\operatorname {KummerU}\left (\frac {\sqrt {-a_{1} a_{3}}\, a_{0} +a_{1} a_{2}}{2 a_{1}}, a_{2} +1, 2 x \sqrt {-a_{1} a_{3}}\right ) c_1 \left (\sqrt {-a_{1} a_{3}}\, a_{0} -a_{1} a_{2} \right )}{2}\right ) a_{1}}{4 a_{1}^{3} a_{3}^{2} \left (\sqrt {-a_{1} a_{3}}\, a_{0} +a_{1} a_{2} \right ) \operatorname {KummerM}\left (\frac {\sqrt {-a_{1} a_{3}}\, a_{0} +a_{1} \left (a_{2} +2\right )}{2 a_{1}}, a_{2} +1, 2 x \sqrt {-a_{1} a_{3}}\right )-\sqrt {-a_{1} a_{3}}\, c_1 \left (a_{0}^{2} a_{3} +a_{1} a_{2}^{2}\right ) \operatorname {KummerU}\left (\frac {\sqrt {-a_{1} a_{3}}\, a_{0} +a_{1} \left (a_{2} +2\right )}{2 a_{1}}, a_{2} +1, 2 x \sqrt {-a_{1} a_{3}}\right )+2 a_{1} \left (-2 a_{1}^{2} a_{3}^{2} \left (\sqrt {-a_{1} a_{3}}\, a_{0} -a_{1} a_{2} \right ) \operatorname {KummerM}\left (\frac {\sqrt {-a_{1} a_{3}}\, a_{0} +a_{1} a_{2}}{2 a_{1}}, a_{2} +1, 2 x \sqrt {-a_{1} a_{3}}\right )+\operatorname {KummerU}\left (\frac {\sqrt {-a_{1} a_{3}}\, a_{0} +a_{1} a_{2}}{2 a_{1}}, a_{2} +1, 2 x \sqrt {-a_{1} a_{3}}\right ) c_1 \left (a_{2} \sqrt {-a_{1} a_{3}}+a_{3} a_{0} \right )\right )} \]
Mathematica. Time used: 0.261 (sec). Leaf size: 421
ode=x*D[y[x],x]+a3*x*y[x]^2+a2*y[x]+a1*x+a0==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to -\frac {i \left (\sqrt {\text {a1}} c_1 \operatorname {HypergeometricU}\left (\frac {1}{2} \left (\frac {i \sqrt {\text {a3}} \text {a0}}{\sqrt {\text {a1}}}+\text {a2}\right ),\text {a2},2 i \sqrt {\text {a1}} \sqrt {\text {a3}} x\right )+c_1 \left (\sqrt {\text {a1}} \text {a2}+i \text {a0} \sqrt {\text {a3}}\right ) \operatorname {HypergeometricU}\left (\frac {1}{2} \left (\frac {i \sqrt {\text {a3}} \text {a0}}{\sqrt {\text {a1}}}+\text {a2}+2\right ),\text {a2}+1,2 i \sqrt {\text {a1}} \sqrt {\text {a3}} x\right )+\sqrt {\text {a1}} \left (2 L_{-\frac {i \sqrt {\text {a3}} \text {a0}}{2 \sqrt {\text {a1}}}-\frac {\text {a2}}{2}-1}^{\text {a2}}\left (2 i \sqrt {\text {a1}} \sqrt {\text {a3}} x\right )+L_{-\frac {i \sqrt {\text {a3}} \text {a0}}{2 \sqrt {\text {a1}}}-\frac {\text {a2}}{2}}^{\text {a2}-1}\left (2 i \sqrt {\text {a1}} \sqrt {\text {a3}} x\right )\right )\right )}{\sqrt {\text {a3}} \left (c_1 \operatorname {HypergeometricU}\left (\frac {1}{2} \left (\frac {i \sqrt {\text {a3}} \text {a0}}{\sqrt {\text {a1}}}+\text {a2}\right ),\text {a2},2 i \sqrt {\text {a1}} \sqrt {\text {a3}} x\right )+L_{-\frac {i \sqrt {\text {a3}} \text {a0}}{2 \sqrt {\text {a1}}}-\frac {\text {a2}}{2}}^{\text {a2}-1}\left (2 i \sqrt {\text {a1}} \sqrt {\text {a3}} x\right )\right )}\\ y(x)&\to \frac {\frac {\left (\text {a0} \sqrt {\text {a3}}-i \sqrt {\text {a1}} \text {a2}\right ) \operatorname {HypergeometricU}\left (\frac {1}{2} \left (\frac {i \sqrt {\text {a3}} \text {a0}}{\sqrt {\text {a1}}}+\text {a2}+2\right ),\text {a2}+1,2 i \sqrt {\text {a1}} \sqrt {\text {a3}} x\right )}{\operatorname {HypergeometricU}\left (\frac {1}{2} \left (\frac {i \sqrt {\text {a3}} \text {a0}}{\sqrt {\text {a1}}}+\text {a2}\right ),\text {a2},2 i \sqrt {\text {a1}} \sqrt {\text {a3}} x\right )}-i \sqrt {\text {a1}}}{\sqrt {\text {a3}}} \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
a__0 = symbols("a__0") 
a__1 = symbols("a__1") 
a__2 = symbols("a__2") 
a__3 = symbols("a__3") 
y = Function("y") 
ode = Eq(a__0 + a__1*x + a__2*y(x) + a__3*x*y(x)**2 + x*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out