Internal
problem
ID
[13265]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
1,
section
1.2.
Riccati
Equation.
1.2.2.
Equations
Containing
Power
Functions
Problem
number
:
39
Date
solved
:
Wednesday, October 01, 2025 at 04:54:30 AM
CAS
classification
:
[[_homogeneous, `class G`], _rational, _Riccati]
ode:=x*diff(y(x),x) = a*x^n*y(x)^2+b*y(x)+c*x^(-n); dsolve(ode,y(x), singsol=all);
ode=x*D[y[x],x]==a*x^n*y[x]^2+b*y[x]+c*x^(-n); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") c = symbols("c") n = symbols("n") y = Function("y") ode = Eq(-a*x**n*y(x)**2 - b*y(x) - c/x**n + x*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE -x**(-n - 2)*(c*x + x**(n + 1)*(a*x**n*y(x) + b)*y(x)) + Derivat