Internal
problem
ID
[13280]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
1,
section
1.2.
Riccati
Equation.
1.2.2.
Equations
Containing
Power
Functions
Problem
number
:
54
Date
solved
:
Wednesday, October 01, 2025 at 05:17:38 AM
CAS
classification
:
[_rational, _Riccati]
ode:=x^2*diff(y(x),x) = (alpha*x^(2*n)+beta*x^n+gamma)*y(x)^2+(a*x^n+b)*x*y(x)+c*x^2; dsolve(ode,y(x), singsol=all);
ode=x^2*D[y[x],x]==(\[Alpha]*x^(2*n)+\[Beta]*x^n+\[Gamma])*y[x]^2+(a*x^n+b)*x*y[x]+c*x^2; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Too large to display
from sympy import * x = symbols("x") Alpha = symbols("Alpha") BETA = symbols("BETA") Gamma = symbols("Gamma") a = symbols("a") b = symbols("b") c = symbols("c") n = symbols("n") y = Function("y") ode = Eq(-c*x**2 + x**2*Derivative(y(x), x) - x*(a*x**n + b)*y(x) - (Alpha*x**(2*n) + BETA*x**n + Gamma)*y(x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (c*x**2 + x*(a*x**n + b)*y(x) + (Alpha*x**(2*n) + BETA*x**n + Gamma)*y(x)**2)/x**2 cannot be solved by the factorable group method