55.2.55 problem 55

Internal problem ID [13281]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 1, section 1.2. Riccati Equation. 1.2.2. Equations Containing Power Functions
Problem number : 55
Date solved : Wednesday, October 01, 2025 at 05:26:13 AM
CAS classification : [_rational, _Riccati]

\begin{align*} \left (x^{2}-1\right ) y^{\prime }+\lambda \left (y^{2}-2 x y+1\right )&=0 \end{align*}
Maple. Time used: 0.024 (sec). Leaf size: 280
ode:=(x^2-1)*diff(y(x),x)+lambda*(y(x)^2-2*x*y(x)+1) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = -\frac {2 \left (-\frac {x}{2}-\frac {1}{2}\right )^{2 \lambda } \left (\left (-\frac {x}{2}-\frac {1}{2}\right )^{-2 \lambda } \left (x +1\right ) \left (x -1\right )^{2} \operatorname {HeunCPrime}\left (0, 2 \lambda -1, 0, 0, \lambda ^{2}-\lambda +\frac {1}{2}, \frac {2}{x +1}\right )+8 c_1 \left (x -1\right )^{2} \operatorname {HeunCPrime}\left (0, -2 \lambda +1, 0, 0, \lambda ^{2}-\lambda +\frac {1}{2}, \frac {2}{x +1}\right )-8 \left (c_1 \left (\frac {x +1}{x -1}\right )^{-\lambda } \left (\left (\lambda -\frac {1}{2}\right ) x -\frac {\lambda }{2}+\frac {1}{2}\right ) \operatorname {hypergeom}\left (\left [-\lambda +1, -\lambda +1\right ], \left [-2 \lambda +2\right ], -\frac {2}{x -1}\right )+\frac {\lambda \left (-\frac {x}{2}-\frac {1}{2}\right )^{-2 \lambda } \operatorname {hypergeom}\left (\left [\lambda , \lambda \right ], \left [2 \lambda \right ], -\frac {2}{x -1}\right ) \left (\frac {x +1}{x -1}\right )^{\lambda } \left (x -1\right )}{16}\right ) \left (x +1\right )^{2}\right ) \left (\frac {x +1}{x -1}\right )^{\lambda }}{\left (x +1\right )^{2} \left (8 \operatorname {hypergeom}\left (\left [-\lambda +1, -\lambda +1\right ], \left [-2 \lambda +2\right ], -\frac {2}{x -1}\right ) c_1 \left (-\frac {x}{2}-\frac {1}{2}\right )^{2 \lambda }+\operatorname {hypergeom}\left (\left [\lambda , \lambda \right ], \left [2 \lambda \right ], -\frac {2}{x -1}\right ) \left (\frac {x +1}{x -1}\right )^{2 \lambda } \left (x -1\right )\right ) \lambda } \]
Mathematica. Time used: 0.27 (sec). Leaf size: 47
ode=(x^2-1)*D[y[x],x]+\[Lambda]*(y[x]^2-2*x*y[x]+1)==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {\operatorname {LegendreQ}(\lambda ,x)+c_1 \operatorname {LegendreP}(\lambda ,x)}{\operatorname {LegendreQ}(\lambda -1,x)+c_1 \operatorname {LegendreP}(\lambda -1,x)}\\ y(x)&\to \frac {\operatorname {LegendreP}(\lambda ,x)}{\operatorname {LegendreP}(\lambda -1,x)} \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
lambda_ = symbols("lambda_") 
y = Function("y") 
ode = Eq(lambda_*(-2*x*y(x) + y(x)**2 + 1) + (x**2 - 1)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
RecursionError : maximum recursion depth exceeded