Internal
problem
ID
[13285]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
1,
section
1.2.
Riccati
Equation.
1.2.2.
Equations
Containing
Power
Functions
Problem
number
:
59
Date
solved
:
Wednesday, October 01, 2025 at 05:47:05 AM
CAS
classification
:
[_rational, [_1st_order, `_with_symmetry_[F(x),G(x)]`], _Riccati]
ode:=(a*x^2+b*x+c)*diff(y(x),x) = y(x)^2+(2*lambda*x+b)*y(x)+lambda*(lambda-a)*x^2+mu; dsolve(ode,y(x), singsol=all);
ode=(a*x^2+b*x+c)*D[y[x],x]==y[x]^2+(2*\[Lambda]*x+b)*y[x]+\[Lambda]*(\[Lambda]-a)*x^2+\[Mu]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") c = symbols("c") lambda_ = symbols("lambda_") mu = symbols("mu") y = Function("y") ode = Eq(-lambda_*x**2*(-a + lambda_) - mu - (b + 2*lambda_*x)*y(x) + (a*x**2 + b*x + c)*Derivative(y(x), x) - y(x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out