Internal
problem
ID
[13286]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
1,
section
1.2.
Riccati
Equation.
1.2.2.
Equations
Containing
Power
Functions
Problem
number
:
60
Date
solved
:
Wednesday, October 01, 2025 at 05:47:10 AM
CAS
classification
:
[_rational, _Riccati]
ode:=(a*x^2+b*x+c)*diff(y(x),x) = y(x)^2+(a*x+mu)*y(x)-lambda^2*x^2+lambda*(b-mu)*x+c*lambda; dsolve(ode,y(x), singsol=all);
ode=(a*x^2+b*x+c)*D[y[x],x]==y[x]^2+(a*x+\[Mu])*y[x]-\[Lambda]^2*x^2+\[Lambda]*(b-\[Mu])*x+\[Lambda]*c; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") c = symbols("c") lambda_ = symbols("lambda_") mu = symbols("mu") y = Function("y") ode = Eq(-c*lambda_ + lambda_**2*x**2 - lambda_*x*(b - mu) - (a*x + mu)*y(x) + (a*x**2 + b*x + c)*Derivative(y(x), x) - y(x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out