Internal
problem
ID
[13287]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
1,
section
1.2.
Riccati
Equation.
1.2.2.
Equations
Containing
Power
Functions
Problem
number
:
61
Date
solved
:
Wednesday, October 01, 2025 at 05:48:43 AM
CAS
classification
:
[_rational, _Riccati]
ode:=(a__2*x^2+b__2*x+c__2)*diff(y(x),x) = y(x)^2+(a__1*x+b__1)*y(x)-lambda*(lambda+a__1-a__2)*x^2+lambda*(b__2-b__1)*x+lambda*c__2; dsolve(ode,y(x), singsol=all);
ode=(a2*x^2+b2*x+c2)*D[y[x],x]==y[x]^2+(a1*x+b1)*y[x]-\[Lambda]*(\[Lambda]+a1-a2)*x^2+\[Lambda]*(b2-b1)*x+\[Lambda]*c2; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a__1 = symbols("a__1") a__2 = symbols("a__2") b__1 = symbols("b__1") b__2 = symbols("b__2") c__2 = symbols("c__2") lambda_ = symbols("lambda_") y = Function("y") ode = Eq(-c__2*lambda_ + lambda_*x**2*(a__1 - a__2 + lambda_) - lambda_*x*(-b__1 + b__2) - (a__1*x + b__1)*y(x) + (a__2*x**2 + b__2*x + c__2)*Derivative(y(x), x) - y(x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out