55.2.75 problem 75

Internal problem ID [13301]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 1, section 1.2. Riccati Equation. 1.2.2. Equations Containing Power Functions
Problem number : 75
Date solved : Wednesday, October 01, 2025 at 06:32:12 AM
CAS classification : [_rational, _Riccati]

\begin{align*} \left (a \,x^{n}+b \,x^{m}+c \right ) y^{\prime }&=c y^{2}-b \,x^{m -1} y+a \,x^{-2+n} \end{align*}
Maple
ode:=(a*x^n+b*x^m+c)*diff(y(x),x) = c*y(x)^2-b*x^(m-1)*y(x)+a*x^(n-2); 
dsolve(ode,y(x), singsol=all);
 
\[ \text {No solution found} \]
Mathematica
ode=(a*x^n+b*x^m+c)*D[y[x],x]==c*y[x]^2-b*x^(m-1)*y[x]+a*x^(n-2); 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 

Not solved

Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
c = symbols("c") 
m = symbols("m") 
n = symbols("n") 
y = Function("y") 
ode = Eq(-a*x**(n - 2) + b*x**(m - 1)*y(x) - c*y(x)**2 + (a*x**n + b*x**m + c)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out