Internal
problem
ID
[13301]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
1,
section
1.2.
Riccati
Equation.
1.2.2.
Equations
Containing
Power
Functions
Problem
number
:
75
Date
solved
:
Wednesday, October 01, 2025 at 06:32:12 AM
CAS
classification
:
[_rational, _Riccati]
ode:=(a*x^n+b*x^m+c)*diff(y(x),x) = c*y(x)^2-b*x^(m-1)*y(x)+a*x^(n-2); dsolve(ode,y(x), singsol=all);
ode=(a*x^n+b*x^m+c)*D[y[x],x]==c*y[x]^2-b*x^(m-1)*y[x]+a*x^(n-2); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Not solved
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") c = symbols("c") m = symbols("m") n = symbols("n") y = Function("y") ode = Eq(-a*x**(n - 2) + b*x**(m - 1)*y(x) - c*y(x)**2 + (a*x**n + b*x**m + c)*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out