Internal
problem
ID
[13302]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
1,
section
1.2.
Riccati
Equation.
1.2.2.
Equations
Containing
Power
Functions
Problem
number
:
76
Date
solved
:
Wednesday, October 01, 2025 at 06:34:07 AM
CAS
classification
:
[_rational, _Riccati]
ode:=(a*x^n+b*x^m+c)*diff(y(x),x) = a*x^(n-2)*y(x)^2+b*x^(m-1)*y(x)+c; dsolve(ode,y(x), singsol=all);
ode=(a*x^n+b*x^m+c)*D[y[x],x]==a*x^(n-2)*y[x]^2+b*x^(m-1)*y[x]+c; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Not solved
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") c = symbols("c") m = symbols("m") n = symbols("n") y = Function("y") ode = Eq(-a*x**(n - 2)*y(x)**2 - b*x**(m - 1)*y(x) - c + (a*x**n + b*x**m + c)*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out