55.11.9 problem 35

Internal problem ID [13429]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 1, section 1.2. Riccati Equation. subsection 1.2.6-3. Equations with tangent.
Problem number : 35
Date solved : Wednesday, October 01, 2025 at 11:56:40 AM
CAS classification : [[_1st_order, `_with_symmetry_[F(x),G(x)]`], _Riccati]

\begin{align*} y^{\prime }&=a \tan \left (\lambda x +\mu \right )^{k} \left (y-b \,x^{n}-c \right )^{2}+b n \,x^{n -1} \end{align*}
Maple. Time used: 0.009 (sec). Leaf size: 42
ode:=diff(y(x),x) = a*tan(lambda*x+mu)^k*(y(x)-b*x^n-c)^2+b*n*x^(n-1); 
dsolve(ode,y(x), singsol=all);
 
\[ y = b \,x^{n}+c +\frac {1}{c_1 -a \int \left (-\frac {\tan \left (\mu \right )+\tan \left (\lambda x \right )}{\tan \left (\mu \right ) \tan \left (\lambda x \right )-1}\right )^{k}d x} \]
Mathematica. Time used: 0.924 (sec). Leaf size: 75
ode=D[y[x],x]==a*Tan[\[Lambda]*x+mu]^k*(y[x]-b*x^n-c)^2+b*n*x^(n-1); 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {1}{-\frac {a \tan ^{k+1}(\mu +\lambda x) \operatorname {Hypergeometric2F1}\left (1,\frac {k+1}{2},\frac {k+3}{2},-\tan ^2(\mu +x \lambda )\right )}{(k+1) \lambda }+c_1}+b x^n+c\\ y(x)&\to b x^n+c \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
c = symbols("c") 
k = symbols("k") 
lambda_ = symbols("lambda_") 
mu = symbols("mu") 
n = symbols("n") 
y = Function("y") 
ode = Eq(-a*(-b*x**n - c + y(x))**2*tan(lambda_*x + mu)**k - b*n*x**(n - 1) + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out