Internal
problem
ID
[13430]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
1,
section
1.2.
Riccati
Equation.
subsection
1.2.6-3.
Equations
with
tangent.
Problem
number
:
36
Date
solved
:
Wednesday, October 01, 2025 at 12:00:04 PM
CAS
classification
:
[_Riccati]
ode:=x*diff(y(x),x) = a*tan(lambda*x)^m*y(x)^2+k*y(x)+a*b^2*x^(2*k)*tan(lambda*x)^m; dsolve(ode,y(x), singsol=all);
ode=x*D[y[x],x]==a*Tan[\[Lambda]*x]^m*y[x]^2+k*y[x]+a*b^2*x^(2*k)*Tan[\[Lambda]*x]^m; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") k = symbols("k") lambda_ = symbols("lambda_") m = symbols("m") y = Function("y") ode = Eq(-a*b**2*x**(2*k)*tan(lambda_*x)**m - a*y(x)**2*tan(lambda_*x)**m - k*y(x) + x*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out