Internal
problem
ID
[13431]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
1,
section
1.2.
Riccati
Equation.
subsection
1.2.6-3.
Equations
with
tangent.
Problem
number
:
37
Date
solved
:
Wednesday, October 01, 2025 at 12:01:35 PM
CAS
classification
:
[_Riccati]
ode:=(a*tan(lambda*x)+b)*diff(y(x),x) = y(x)^2+k*tan(x*mu)*y(x)-d^2+k*d*tan(x*mu); dsolve(ode,y(x), singsol=all);
ode=(a*Tan[\[Lambda]*x]+b)*D[y[x],x]==y[x]^2+k*Tan[\[Mu]*x]*y[x]-d^2+k*d*Tan[\[Mu]*x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") d = symbols("d") k = symbols("k") lambda_ = symbols("lambda_") mu = symbols("mu") y = Function("y") ode = Eq(d**2 - d*k*tan(mu*x) - k*y(x)*tan(mu*x) + (a*tan(lambda_*x) + b)*Derivative(y(x), x) - y(x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)
TypeError : Invalid NaN comparison