55.11.11 problem 37

Internal problem ID [13431]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 1, section 1.2. Riccati Equation. subsection 1.2.6-3. Equations with tangent.
Problem number : 37
Date solved : Wednesday, October 01, 2025 at 12:01:35 PM
CAS classification : [_Riccati]

\begin{align*} \left (a \tan \left (\lambda x \right )+b \right ) y^{\prime }&=y^{2}+k \tan \left (\mu x \right ) y-d^{2}+k d \tan \left (\mu x \right ) \end{align*}
Maple. Time used: 0.014 (sec). Leaf size: 351
ode:=(a*tan(lambda*x)+b)*diff(y(x),x) = y(x)^2+k*tan(x*mu)*y(x)-d^2+k*d*tan(x*mu); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {-\left (\sec \left (\lambda x \right )^{2}\right )^{\frac {d a}{\lambda \left (a^{2}+b^{2}\right )}} \left (a \tan \left (\lambda x \right )+b \right )^{-\frac {2 d a}{\lambda \left (a^{2}+b^{2}\right )}} {\mathrm e}^{\frac {-2 d b \arctan \left (\tan \left (\lambda x \right )\right )+k \int \frac {\tan \left (\mu x \right )}{a \tan \left (\lambda x \right )+b}d x \lambda \left (a^{2}+b^{2}\right )}{\lambda \left (a^{2}+b^{2}\right )}}-\left (\int \left (a \tan \left (\lambda x \right )+b \right )^{\frac {\left (-a^{2}-b^{2}\right ) \lambda -2 a d}{\lambda \left (a^{2}+b^{2}\right )}} \left (\sec \left (\lambda x \right )^{2}\right )^{\frac {d a}{\lambda \left (a^{2}+b^{2}\right )}} {\mathrm e}^{\frac {-2 d b \arctan \left (\tan \left (\lambda x \right )\right )+k \int \frac {\tan \left (\mu x \right )}{a \tan \left (\lambda x \right )+b}d x \lambda \left (a^{2}+b^{2}\right )}{\lambda \left (a^{2}+b^{2}\right )}}d x -c_1 \right ) d}{\int \left (a \tan \left (\lambda x \right )+b \right )^{\frac {\left (-a^{2}-b^{2}\right ) \lambda -2 a d}{\lambda \left (a^{2}+b^{2}\right )}} \left (\sec \left (\lambda x \right )^{2}\right )^{\frac {d a}{\lambda \left (a^{2}+b^{2}\right )}} {\mathrm e}^{\frac {-2 d b \arctan \left (\tan \left (\lambda x \right )\right )+k \int \frac {\tan \left (\mu x \right )}{a \tan \left (\lambda x \right )+b}d x \lambda \left (a^{2}+b^{2}\right )}{\lambda \left (a^{2}+b^{2}\right )}}d x -c_1} \]
Mathematica. Time used: 20.04 (sec). Leaf size: 800
ode=(a*Tan[\[Lambda]*x]+b)*D[y[x],x]==y[x]^2+k*Tan[\[Mu]*x]*y[x]-d^2+k*d*Tan[\[Mu]*x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} \text {Solution too large to show}\end{align*}
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
d = symbols("d") 
k = symbols("k") 
lambda_ = symbols("lambda_") 
mu = symbols("mu") 
y = Function("y") 
ode = Eq(d**2 - d*k*tan(mu*x) - k*y(x)*tan(mu*x) + (a*tan(lambda_*x) + b)*Derivative(y(x), x) - y(x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
TypeError : Invalid NaN comparison