Internal
problem
ID
[13497]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
1,
section
1.2.
Riccati
Equation.
subsection
1.2.8-1.
Equations
containing
arbitrary
functions
(but
not
containing
their
derivatives).
Problem
number
:
12
Date
solved
:
Wednesday, October 01, 2025 at 03:32:59 PM
CAS
classification
:
[_Riccati]
ode:=diff(y(x),x) = a*exp(lambda*x)*y(x)^2+a*exp(lambda*x)*f(x)*y(x)+lambda*f(x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x]==a*Exp[\[Lambda]*x]*y[x]^2+a*Exp[\[Lambda]*x]*f[x]*y[x]+\[Lambda]*f[x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") lambda_ = symbols("lambda_") y = Function("y") f = Function("f") ode = Eq(-a*f(x)*y(x)*exp(lambda_*x) - a*y(x)**2*exp(lambda_*x) - lambda_*f(x) + Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE -a*f(x)*y(x)*exp(lambda_*x) - a*y(x)**2*exp(lambda_*x) - lambda_*f(x) + Derivative(y(x), x) cannot be solved by the lie group method