55.19.13 problem 13

Internal problem ID [13498]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 1, section 1.2. Riccati Equation. subsection 1.2.8-1. Equations containing arbitrary functions (but not containing their derivatives).
Problem number : 13
Date solved : Wednesday, October 01, 2025 at 03:33:02 PM
CAS classification : [_Riccati]

\begin{align*} y^{\prime }&=f \left (x \right ) y^{2}-a \,{\mathrm e}^{\lambda x} f \left (x \right ) y+a \lambda \,{\mathrm e}^{\lambda x} \end{align*}
Maple
ode:=diff(y(x),x) = y(x)^2*f(x)-a*exp(lambda*x)*f(x)*y(x)+a*lambda*exp(lambda*x); 
dsolve(ode,y(x), singsol=all);
 
\[ \text {No solution found} \]
Mathematica. Time used: 42.397 (sec). Leaf size: 207
ode=D[y[x],x]==f[x]*y[x]^2-a*Exp[\[Lambda]*x]*f[x]*y[x]+a*\[Lambda]*Exp[\[Lambda]*x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {a \exp \left (\int _1^{e^{x \lambda }}-\frac {a f\left (\frac {\log (K[1])}{\lambda }\right )}{\lambda }dK[1]+2 \lambda x\right ) \left (\int _1^{e^{x \lambda }}\frac {\exp \left (-\int _1^{K[2]}-\frac {a f\left (\frac {\log (K[1])}{\lambda }\right )}{\lambda }dK[1]\right )}{K[2]^2}dK[2]+c_1\right )}{\exp \left (\int _1^{e^{x \lambda }}-\frac {a f\left (\frac {\log (K[1])}{\lambda }\right )}{\lambda }dK[1]+\lambda x\right ) \int _1^{e^{x \lambda }}\frac {\exp \left (-\int _1^{K[2]}-\frac {a f\left (\frac {\log (K[1])}{\lambda }\right )}{\lambda }dK[1]\right )}{K[2]^2}dK[2]+c_1 \exp \left (\int _1^{e^{x \lambda }}-\frac {a f\left (\frac {\log (K[1])}{\lambda }\right )}{\lambda }dK[1]+\lambda x\right )+1}\\ y(x)&\to a e^{\lambda x} \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
lambda_ = symbols("lambda_") 
y = Function("y") 
f = Function("f") 
ode = Eq(-a*lambda_*exp(lambda_*x) + a*f(x)*y(x)*exp(lambda_*x) - f(x)*y(x)**2 + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE -a*lambda_*exp(lambda_*x) + a*f(x)*y(x)*exp(lambda_*x) - f(x)*y(x)**2 + Derivative(y(x), x) cannot be solved by the lie group method