Internal
problem
ID
[13535]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
1,
section
1.2.
Riccati
Equation.
subsection
1.2.9.
Some
Transformations
Problem
number
:
8
Date
solved
:
Wednesday, October 01, 2025 at 04:04:54 PM
CAS
classification
:
[_Riccati]
ode:=diff(y(x),x) = y(x)^2-1/4*lambda^2+exp(2*lambda*x)/(c*exp(lambda*x)+d)^4*f((exp(lambda*x)*a+b)/(c*exp(lambda*x)+d)); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x]==y[x]^2-\[Lambda]^2/4+Exp[2*\[Lambda]*x]/(c*Exp[\[Lambda]*x]+d)^4*f[(a*Exp[\[Lambda]*x]+b)/(c*Exp[\[Lambda]*x]+d)]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Not solved
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") c = symbols("c") d = symbols("d") lambda_ = symbols("lambda_") y = Function("y") f = Function("f") ode = Eq(lambda_**2/4 - y(x)**2 + Derivative(y(x), x) - f((a*exp(lambda_*x) + b)/(c*exp(lambda_*x) + d))*exp(2*lambda_*x)/(c*exp(lambda_*x) + d)**4,0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out