55.21.9 problem 9

Internal problem ID [13536]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 1, section 1.2. Riccati Equation. subsection 1.2.9. Some Transformations
Problem number : 9
Date solved : Wednesday, October 01, 2025 at 04:14:28 PM
CAS classification : [_Riccati]

\begin{align*} y^{\prime }&=y^{2}-\lambda ^{2}+\frac {f \left (\coth \left (\lambda x \right )\right )}{\sinh \left (\lambda x \right )^{4}} \end{align*}
Maple
ode:=diff(y(x),x) = y(x)^2-lambda^2+1/sinh(lambda*x)^4*f(coth(lambda*x)); 
dsolve(ode,y(x), singsol=all);
 
\[ \text {No solution found} \]
Mathematica
ode=D[y[x],x]==y[x]^2-\[Lambda]^2+Sinh[\[Lambda]*x]^(-4)*f[Coth[\[Lambda]*x]]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 

Not solved

Sympy
from sympy import * 
x = symbols("x") 
lambda_ = symbols("lambda_") 
y = Function("y") 
f = Function("f") 
ode = Eq(lambda_**2 - f(1/tanh(lambda_*x))/sinh(lambda_*x)**4 - y(x)**2 + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE lambda_**2 - f(1/tanh(lambda_*x))/sinh(lambda_*x)**4 - y(x)**2 + Derivative(y(x), x) cannot be solved by the lie group method