Internal
problem
ID
[13720]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
1,
section
1.3.
Abel
Equations
of
the
Second
Kind.
subsection
1.3.4-2.
Problem
number
:
11
Date
solved
:
Thursday, October 02, 2025 at 04:07:40 AM
CAS
classification
:
[_rational, [_Abel, `2nd type`, `class B`]]
ode:=((4*a*x+lambda*s)*y(x)+(3*s+4*lambda)*x)*diff(y(x),x) = 3/2*a*y(x)^2+6*lambda+2*s+2*x; dsolve(ode,y(x), singsol=all);
ode=((4*a*x+\[Lambda]*s)*y[x]+(4*\[Lambda]+3*s)*x)*D[y[x],x]==3/2*a*y[x]^2+2*(3*\[Lambda]+s)+2*x; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Not solved
from sympy import * x = symbols("x") a = symbols("a") lambda_ = symbols("lambda_") s = symbols("s") y = Function("y") ode = Eq(-3*a*y(x)**2/2 - 6*lambda_ - 2*s - 2*x + (x*(4*lambda_ + 3*s) + (4*a*x + lambda_*s)*y(x))*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out