55.25.12 problem 12

Internal problem ID [13721]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 1, section 1.3. Abel Equations of the Second Kind. subsection 1.3.4-2.
Problem number : 12
Date solved : Thursday, October 02, 2025 at 04:10:35 AM
CAS classification : [_rational, [_Abel, `2nd type`, `class B`]]

\begin{align*} \left (2 A x y+a y+b x +c \right ) y^{\prime }&=A y^{2}+A \,k^{2} x^{2}+m y+k \left (a k +b -m \right ) x +s \end{align*}
Maple
ode:=(2*A*x*y(x)+a*y(x)+b*x+c)*diff(y(x),x) = A*y(x)^2+A*k^2*x^2+m*y(x)+k*(a*k+b-m)*x+s; 
dsolve(ode,y(x), singsol=all);
 
\[ \text {No solution found} \]
Mathematica
ode=(2*A*x*y[x]+a*y[x]+b*x+c)*D[y[x],x]==A*y[x]^2+A*k^2*x^2+m*y[x]+k*(a*k+b-m)*x+s; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 

Timed out

Sympy
from sympy import * 
x = symbols("x") 
A = symbols("A") 
a = symbols("a") 
b = symbols("b") 
c = symbols("c") 
m = symbols("m") 
k = symbols("k") 
s = symbols("s") 
y = Function("y") 
ode = Eq(-A*k**2*x**2 - A*y(x)**2 - k*x*(a*k + b - m) - m*y(x) - s + (2*A*x*y(x) + a*y(x) + b*x + c)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out