55.26.2 problem 2

Internal problem ID [13749]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 1, section 1.4. Equations Containing Polynomial Functions of y. subsection 1.4.1-2 Abel equations of the first kind.
Problem number : 2
Date solved : Sunday, October 12, 2025 at 05:28:08 AM
CAS classification : [_Abel]

\begin{align*} y^{\prime }&=-y^{3}+3 a^{2} x^{2} y-2 a^{3} x^{3}+a \end{align*}
Maple. Time used: 0.005 (sec). Leaf size: 136
ode:=diff(y(x),x) = -y(x)^3+3*a^2*x^2*y(x)-2*a^3*x^3+a; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {a \left (9 x^{3} a^{2}+2 \,18^{{1}/{3}} \left (-a^{2}\right )^{{1}/{3}} \operatorname {RootOf}\left (\operatorname {AiryBi}\left (\textit {\_Z} \right ) 18^{{1}/{3}} \left (-a^{2}\right )^{{1}/{3}} c_1 x +18^{{1}/{3}} \left (-a^{2}\right )^{{1}/{3}} x \operatorname {AiryAi}\left (\textit {\_Z} \right )+2 \operatorname {AiryBi}\left (1, \textit {\_Z}\right ) c_1 +2 \operatorname {AiryAi}\left (1, \textit {\_Z}\right )\right ) x +6\right )}{9 a^{2} x^{2}+2 \,18^{{1}/{3}} \left (-a^{2}\right )^{{1}/{3}} \operatorname {RootOf}\left (\operatorname {AiryBi}\left (\textit {\_Z} \right ) 18^{{1}/{3}} \left (-a^{2}\right )^{{1}/{3}} c_1 x +18^{{1}/{3}} \left (-a^{2}\right )^{{1}/{3}} x \operatorname {AiryAi}\left (\textit {\_Z} \right )+2 \operatorname {AiryBi}\left (1, \textit {\_Z}\right ) c_1 +2 \operatorname {AiryAi}\left (1, \textit {\_Z}\right )\right )} \]
Mathematica. Time used: 0.411 (sec). Leaf size: 307
ode=D[y[x],x]==-y[x]^3+3*a^2*x^2*y[x]-2*a^3*x^3+a; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [\frac {\operatorname {AiryAiPrime}\left (-\frac {3}{2} \sqrt [3]{-\frac {3}{2}} a^{4/3} x^2-\frac {1}{\frac {(-1)^{2/3} \sqrt [3]{\frac {2}{3}} y(x)}{\sqrt [3]{a}}-(-1)^{2/3} \sqrt [3]{\frac {2}{3}} a^{2/3} x}\right )-\left (-\frac {3}{2}\right )^{2/3} a^{2/3} x \operatorname {AiryAi}\left (-\frac {3}{2} \sqrt [3]{-\frac {3}{2}} a^{4/3} x^2-\frac {1}{\frac {(-1)^{2/3} \sqrt [3]{\frac {2}{3}} y(x)}{\sqrt [3]{a}}-(-1)^{2/3} \sqrt [3]{\frac {2}{3}} a^{2/3} x}\right )}{\operatorname {AiryBiPrime}\left (-\frac {3}{2} \sqrt [3]{-\frac {3}{2}} a^{4/3} x^2-\frac {1}{\frac {(-1)^{2/3} \sqrt [3]{\frac {2}{3}} y(x)}{\sqrt [3]{a}}-(-1)^{2/3} \sqrt [3]{\frac {2}{3}} a^{2/3} x}\right )-\left (-\frac {3}{2}\right )^{2/3} a^{2/3} x \operatorname {AiryBi}\left (-\frac {3}{2} \sqrt [3]{-\frac {3}{2}} a^{4/3} x^2-\frac {1}{\frac {(-1)^{2/3} \sqrt [3]{\frac {2}{3}} y(x)}{\sqrt [3]{a}}-(-1)^{2/3} \sqrt [3]{\frac {2}{3}} a^{2/3} x}\right )}+c_1=0,y(x)\right ] \]
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
y = Function("y") 
ode = Eq(2*a**3*x**3 - 3*a**2*x**2*y(x) - a + y(x)**3 + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE 2*a**3*x**3 - 3*a**2*x**2*d(x) - a + d(x)**3 + Derivative(d(x), x) cannot be solved by the factorable group method