55.26.3 problem 3

Internal problem ID [13750]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 1, section 1.4. Equations Containing Polynomial Functions of y. subsection 1.4.1-2 Abel equations of the first kind.
Problem number : 3
Date solved : Sunday, October 12, 2025 at 05:28:10 AM
CAS classification : [_Abel]

\begin{align*} y^{\prime }&=-y^{3}+\left (a x +b \right ) y^{2} \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 241
ode:=diff(y(x),x) = -y(x)^3+(a*x+b)*y(x)^2; 
dsolve(ode,y(x), singsol=all);
 
\[ \frac {\left (-a^{2}\right )^{{1}/{3}} \left (a x +b \right ) \left (\operatorname {AiryBi}\left (-\frac {\left (y \left (a x +b \right )^{2}+2 a \right ) 2^{{2}/{3}}}{4 \left (-a^{2}\right )^{{1}/{3}} y}\right ) c_1 +\operatorname {AiryAi}\left (-\frac {\left (y \left (a x +b \right )^{2}+2 a \right ) 2^{{2}/{3}}}{4 \left (-a^{2}\right )^{{1}/{3}} y}\right )\right ) 2^{{1}/{3}}+2 a \left (\operatorname {AiryBi}\left (1, -\frac {\left (y \left (a x +b \right )^{2}+2 a \right ) 2^{{2}/{3}}}{4 \left (-a^{2}\right )^{{1}/{3}} y}\right ) c_1 +\operatorname {AiryAi}\left (1, -\frac {\left (y \left (a x +b \right )^{2}+2 a \right ) 2^{{2}/{3}}}{4 \left (-a^{2}\right )^{{1}/{3}} y}\right )\right )}{2^{{1}/{3}} \left (a x +b \right ) \left (-a^{2}\right )^{{1}/{3}} \operatorname {AiryBi}\left (-\frac {\left (y \left (a x +b \right )^{2}+2 a \right ) 2^{{2}/{3}}}{4 \left (-a^{2}\right )^{{1}/{3}} y}\right )+2 \operatorname {AiryBi}\left (1, -\frac {\left (y \left (a x +b \right )^{2}+2 a \right ) 2^{{2}/{3}}}{4 \left (-a^{2}\right )^{{1}/{3}} y}\right ) a} = 0 \]
Mathematica. Time used: 0.394 (sec). Leaf size: 223
ode=D[y[x],x]==-y[x]^3+(a*x+b)*y[x]^2; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [\frac {\operatorname {AiryAiPrime}\left (-\frac {\sqrt [3]{-\frac {1}{2}} (b+a x)^2}{2 a^{2/3}}-\frac {\sqrt [3]{-\frac {1}{2}} \sqrt [3]{a}}{y(x)}\right )-\frac {\left (-\frac {1}{2}\right )^{2/3} (a x+b) \operatorname {AiryAi}\left (-\frac {\sqrt [3]{-\frac {1}{2}} (b+a x)^2}{2 a^{2/3}}-\frac {\sqrt [3]{-\frac {1}{2}} \sqrt [3]{a}}{y(x)}\right )}{\sqrt [3]{a}}}{\operatorname {AiryBiPrime}\left (-\frac {\sqrt [3]{-\frac {1}{2}} (b+a x)^2}{2 a^{2/3}}-\frac {\sqrt [3]{-\frac {1}{2}} \sqrt [3]{a}}{y(x)}\right )-\frac {\left (-\frac {1}{2}\right )^{2/3} (a x+b) \operatorname {AiryBi}\left (-\frac {\sqrt [3]{-\frac {1}{2}} (b+a x)^2}{2 a^{2/3}}-\frac {\sqrt [3]{-\frac {1}{2}} \sqrt [3]{a}}{y(x)}\right )}{\sqrt [3]{a}}}+c_1=0,y(x)\right ] \]
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
y = Function("y") 
ode = Eq((-a*x - b)*y(x)**2 + y(x)**3 + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
RecursionError : maximum recursion depth exceeded