Internal
problem
ID
[13756]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
1,
section
1.4.
Equations
Containing
Polynomial
Functions
of
y.
subsection
1.4.1-2
Abel
equations
of
the
first
kind.
Problem
number
:
9
Date
solved
:
Thursday, October 02, 2025 at 07:58:08 AM
CAS
classification
:
[[_homogeneous, `class G`], _Abel]
ode:=diff(y(x),x) = a*x^(2*n+1)*y(x)^3+b*x^(-n-2); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x]==a*x^(2*n+1)*y[x]^3+b*x^(-n-2); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") n = symbols("n") y = Function("y") ode = Eq(-a*x**(2*n + 1)*y(x)**3 - b*x**(-n - 2) + Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : Cannot solve the partial differential equation due to inability of constantsim