Internal
problem
ID
[13757]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
1,
section
1.4.
Equations
Containing
Polynomial
Functions
of
y.
subsection
1.4.1-2
Abel
equations
of
the
first
kind.
Problem
number
:
10
Date
solved
:
Thursday, October 02, 2025 at 07:58:14 AM
CAS
classification
:
[_Abel]
ode:=diff(y(x),x) = a*x^n*y(x)^3+3*a*b*x^(m+n)*y(x)^2-b*m*x^(m-1)-2*a*b^3*x^(n+3*m); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x]==a*x^n*y[x]^3+3*a*b*x^(n+m)*y[x]^2-b*m*x^(m-1)-2*a*b^3*x^(n+3*m); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") n = symbols("n") b = symbols("b") m = symbols("m") y = Function("y") ode = Eq(2*a*b**3*x**(3*m + n) - 3*a*b*x**(m + n)*y(x)**2 - a*x**n*y(x)**3 + b*m*x**(m - 1) + Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE 2*a*b**3*x**(3*m + n) - 3*a*b*x**(m + n)*y(x)**2 - a*x**n*y(x)**3 + b*m*x**(m - 1) + Derivative(y(x), x) cannot be solved by the lie group method