Internal
problem
ID
[13763]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
1,
section
1.4.
Equations
Containing
Polynomial
Functions
of
y.
subsection
1.4.1-2
Abel
equations
of
the
first
kind.
Problem
number
:
16
Date
solved
:
Thursday, October 02, 2025 at 07:59:57 AM
CAS
classification
:
[_rational, _Abel]
ode:=x*diff(y(x),x) = a*x^(n+2)*y(x)^3+(b*x^n-1)*y(x)+c*x^(n-1); dsolve(ode,y(x), singsol=all);
ode=x*D[y[x],x]==a*x^(n+2)*y[x]^3+(b*x^n-1)*y[x]+c*x^(n-1); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") n = symbols("n") c = symbols("c") y = Function("y") ode = Eq(-a*x**(n + 2)*y(x)**3 - c*x**(n - 1) + x*Derivative(y(x), x) - (b*x**n - 1)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (a*x**(n + 2)*y(x)**3 + b*x**n*y(x) + c*x**(n - 1) - y(x))/x cannot be solved by the factorable group method