55.26.17 problem 17

Internal problem ID [13764]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 1, section 1.4. Equations Containing Polynomial Functions of y. subsection 1.4.1-2 Abel equations of the first kind.
Problem number : 17
Date solved : Sunday, October 12, 2025 at 05:28:20 AM
CAS classification : [_rational, _Abel]

\begin{align*} x^{2} y^{\prime }&=y^{3}-3 a^{2} x^{4} y+2 a^{3} x^{6}+2 a \,x^{3} \end{align*}
Maple. Time used: 0.010 (sec). Leaf size: 276
ode:=x^2*diff(y(x),x) = y(x)^3-3*a^2*x^4*y(x)+2*a^3*x^6+2*a*x^3; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {a \left (18^{{2}/{3}} \left (a^{2}\right )^{{2}/{3}} \operatorname {RootOf}\left (\operatorname {AiryBi}\left (-\frac {-18 \textit {\_Z}^{2} \left (a^{2}\right )^{{1}/{3}} x +18^{{2}/{3}}}{18 \left (a^{2}\right )^{{1}/{3}} x}\right ) c_1 \textit {\_Z} +\textit {\_Z} \operatorname {AiryAi}\left (-\frac {-18 \textit {\_Z}^{2} \left (a^{2}\right )^{{1}/{3}} x +18^{{2}/{3}}}{18 \left (a^{2}\right )^{{1}/{3}} x}\right )+\operatorname {AiryBi}\left (1, -\frac {-18 \textit {\_Z}^{2} \left (a^{2}\right )^{{1}/{3}} x +18^{{2}/{3}}}{18 \left (a^{2}\right )^{{1}/{3}} x}\right ) c_1 +\operatorname {AiryAi}\left (1, -\frac {-18 \textit {\_Z}^{2} \left (a^{2}\right )^{{1}/{3}} x +18^{{2}/{3}}}{18 \left (a^{2}\right )^{{1}/{3}} x}\right )\right ) x^{2}-9 a^{2} x^{3}+3\right )}{-9 a^{2} x +\operatorname {RootOf}\left (\operatorname {AiryBi}\left (-\frac {-18 \textit {\_Z}^{2} \left (a^{2}\right )^{{1}/{3}} x +18^{{2}/{3}}}{18 \left (a^{2}\right )^{{1}/{3}} x}\right ) c_1 \textit {\_Z} +\textit {\_Z} \operatorname {AiryAi}\left (-\frac {-18 \textit {\_Z}^{2} \left (a^{2}\right )^{{1}/{3}} x +18^{{2}/{3}}}{18 \left (a^{2}\right )^{{1}/{3}} x}\right )+\operatorname {AiryBi}\left (1, -\frac {-18 \textit {\_Z}^{2} \left (a^{2}\right )^{{1}/{3}} x +18^{{2}/{3}}}{18 \left (a^{2}\right )^{{1}/{3}} x}\right ) c_1 +\operatorname {AiryAi}\left (1, -\frac {-18 \textit {\_Z}^{2} \left (a^{2}\right )^{{1}/{3}} x +18^{{2}/{3}}}{18 \left (a^{2}\right )^{{1}/{3}} x}\right )\right ) \left (a^{2}\right )^{{2}/{3}} 18^{{2}/{3}}} \]
Mathematica. Time used: 0.687 (sec). Leaf size: 463
ode=x^2*D[y[x],x]==y[x]^3-3*a^2*x^4*y[x]+2*a^3*x^6+2*a*x^3; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [\frac {\left (\left (-\frac {3}{2}\right )^{2/3} a^{2/3} x-\frac {1}{\sqrt [3]{-3} 2^{2/3} \sqrt [3]{a} y(x)-\sqrt [3]{-3} 2^{2/3} a^{4/3} x^2}\right ) \operatorname {AiryAi}\left (\left (\left (-\frac {3}{2}\right )^{2/3} a^{2/3} x-\frac {1}{\sqrt [3]{-3} 2^{2/3} \sqrt [3]{a} y(x)-\sqrt [3]{-3} 2^{2/3} a^{4/3} x^2}\right )^2+\frac {\sqrt [3]{-\frac {1}{2}}}{3^{2/3} a^{2/3} x}\right )+\operatorname {AiryAiPrime}\left (\left (\left (-\frac {3}{2}\right )^{2/3} a^{2/3} x-\frac {1}{\sqrt [3]{-3} 2^{2/3} \sqrt [3]{a} y(x)-\sqrt [3]{-3} 2^{2/3} a^{4/3} x^2}\right )^2+\frac {\sqrt [3]{-\frac {1}{2}}}{3^{2/3} a^{2/3} x}\right )}{\left (\left (-\frac {3}{2}\right )^{2/3} a^{2/3} x-\frac {1}{\sqrt [3]{-3} 2^{2/3} \sqrt [3]{a} y(x)-\sqrt [3]{-3} 2^{2/3} a^{4/3} x^2}\right ) \operatorname {AiryBi}\left (\left (\left (-\frac {3}{2}\right )^{2/3} a^{2/3} x-\frac {1}{\sqrt [3]{-3} 2^{2/3} \sqrt [3]{a} y(x)-\sqrt [3]{-3} 2^{2/3} a^{4/3} x^2}\right )^2+\frac {\sqrt [3]{-\frac {1}{2}}}{3^{2/3} a^{2/3} x}\right )+\operatorname {AiryBiPrime}\left (\left (\left (-\frac {3}{2}\right )^{2/3} a^{2/3} x-\frac {1}{\sqrt [3]{-3} 2^{2/3} \sqrt [3]{a} y(x)-\sqrt [3]{-3} 2^{2/3} a^{4/3} x^2}\right )^2+\frac {\sqrt [3]{-\frac {1}{2}}}{3^{2/3} a^{2/3} x}\right )}+c_1=0,y(x)\right ] \]
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
y = Function("y") 
ode = Eq(-2*a**3*x**6 + 3*a**2*x**4*y(x) - 2*a*x**3 + x**2*Derivative(y(x), x) - y(x)**3,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
RecursionError : maximum recursion depth exceeded