Internal
problem
ID
[13771]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
1,
section
1.4.
Equations
Containing
Polynomial
Functions
of
y.
subsection
1.4.1-2
Abel
equations
of
the
first
kind.
Problem
number
:
24
Date
solved
:
Thursday, October 02, 2025 at 08:06:25 AM
CAS
classification
:
[[_1st_order, _with_linear_symmetries], _Abel]
ode:=diff(y(x),x) = a*exp(2*lambda*x)*y(x)^3+b*exp(lambda*x)*y(x)^2+c*y(x)+d*exp(-lambda*x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x]==a*Exp[2*\[Lambda]*x]*y[x]^3+b*Exp[ \[Lambda] *x]*y[x]^2+c*y[x]+d*Exp[- \[Lambda] *x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Too large to display
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") d = symbols("d") c = symbols("c") lambda_ = symbols("lambda_") y = Function("y") ode = Eq(-a*y(x)**3*exp(2*lambda_*x) - b*y(x)**2*exp(lambda_*x) - c*y(x) - d*exp(-lambda_*x) + Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out