Internal
problem
ID
[13772]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
1,
section
1.4.
Equations
Containing
Polynomial
Functions
of
y.
subsection
1.4.1-2
Abel
equations
of
the
first
kind.
Problem
number
:
25
Date
solved
:
Thursday, October 02, 2025 at 08:06:28 AM
CAS
classification
:
[_Abel]
ode:=diff(y(x),x) = a*exp(lambda*x)*y(x)^3+3*a*b*exp(lambda*x)*y(x)^2+c*y(x)-2*a*b^3*exp(lambda*x)+b*c; dsolve(ode,y(x), singsol=all);
ode=D[y[x],x]==a*Exp[\[Lambda]*x]*y[x]^3+3*a*b*Exp[\[Lambda]*x]*y[x]^2+c*y[x]-2*a*b^3*Exp[\[Lambda]*x]+b*c; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") c = symbols("c") lambda_ = symbols("lambda_") y = Function("y") ode = Eq(2*a*b**3*exp(lambda_*x) - 3*a*b*y(x)**2*exp(lambda_*x) - a*y(x)**3*exp(lambda_*x) - b*c - c*y(x) + Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE 2*a*b**3*exp(lambda_*x) - 3*a*b*y(x)**2*exp(lambda_*x) - a*y(x)**3*exp(lambda_*x) - b*c - c*y(x) + Derivative(y(x), x) cannot be solved by the lie group method