Internal
problem
ID
[13773]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
1,
section
1.4.
Equations
Containing
Polynomial
Functions
of
y.
subsection
1.4.1-2
Abel
equations
of
the
first
kind.
Problem
number
:
26
Date
solved
:
Thursday, October 02, 2025 at 08:06:32 AM
CAS
classification
:
[_Abel]
ode:=diff(y(x),x) = a*exp(lambda*x)*y(x)^3+3*a*b*exp(x*(lambda+mu))*y(x)^2-2*a*b^3*exp((lambda+3*mu)*x)-b*mu*exp(x*mu); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x]==a*Exp[\[Lambda]*x]*y[x]^3+3*a*b*Exp[(\[Lambda]+\[Mu])*x]*y[x]^2-2*a*b^3*Exp[ (\[Lambda]+3*\[Mu])*x]-b*\[Mu]*Exp[\[Mu]*x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") lambda_ = symbols("lambda_") b = symbols("b") mu = symbols("mu") y = Function("y") ode = Eq(2*a*b**3*exp(x*(lambda_ + 3*mu)) - 3*a*b*y(x)**2*exp(x*(lambda_ + mu)) - a*y(x)**3*exp(lambda_*x) + b*mu*exp(mu*x) + Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE 2*a*b**3*exp(x*(lambda_ + 3*mu)) - 3*a*b*y(x)**2*exp(x*(lambda_ + mu)) - a*y(x)**3*exp(lambda_*x) + b*mu*exp(mu*x) + Derivative(y(x), x) cannot be solved by the lie group method