Internal
problem
ID
[13809]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
2,
Second-Order
Differential
Equations.
section
2.1.2-2
Problem
number
:
36
Date
solved
:
Thursday, October 02, 2025 at 08:07:03 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=diff(diff(y(x),x),x)+(2*x^2+a)*diff(y(x),x)+(x^4+a*x^2+b+2*x)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}]+(2*x^2+a)*D[y[x],x]+(x^4+a*x^2+2*x+b)*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") y = Function("y") ode = Eq((a + 2*x**2)*Derivative(y(x), x) + (a*x**2 + b + x**4 + 2*x)*y(x) + Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False