Internal
problem
ID
[13810]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
2,
Second-Order
Differential
Equations.
section
2.1.2-2
Problem
number
:
37
Date
solved
:
Friday, October 03, 2025 at 06:54:56 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=diff(diff(y(x),x),x)+(a*x^2+b*x)*diff(y(x),x)+(alpha*x^2+beta*x+gamma)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}]+(a*x^2+b*x)*D[y[x],x]+(\[Alpha]*x^2+\[Beta]*x+\[Gamma])*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Not solved
from sympy import * x = symbols("x") Alpha = symbols("Alpha") BETA = symbols("BETA") Gamma = symbols("Gamma") a = symbols("a") b = symbols("b") y = Function("y") ode = Eq((a*x**2 + b*x)*Derivative(y(x), x) + (Alpha*x**2 + BETA*x + Gamma)*y(x) + Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False