Internal
problem
ID
[14438]
Book
:
A
First
Course
in
Differential
Equations
by
J.
David
Logan.
Third
Edition.
Springer-Verlag,
NY.
2015.
Section
:
Chapter
2,
Second
order
linear
equations.
Section
2.4.1
Cauchy-Euler
equations.
Exercises
page
120
Problem
number
:
1(d)
Date
solved
:
Thursday, October 02, 2025 at 09:37:12 AM
CAS
classification
:
[[_Emden, _Fowler], [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]
ode:=t*diff(diff(x(t),t),t)+4*diff(x(t),t)+2*x(t)/t = 0; dsolve(ode,x(t), singsol=all);
ode=t*D[x[t],{t,2}]+4*D[x[t],t]+2/t*x[t]==0; ic={}; DSolve[{ode,ic},x[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") ode = Eq(t*Derivative(x(t), (t, 2)) + 4*Derivative(x(t), t) + 2*x(t)/t,0) ics = {} dsolve(ode,func=x(t),ics=ics)