Internal
problem
ID
[14439]
Book
:
A
First
Course
in
Differential
Equations
by
J.
David
Logan.
Third
Edition.
Springer-Verlag,
NY.
2015.
Section
:
Chapter
2,
Second
order
linear
equations.
Section
2.4.1
Cauchy-Euler
equations.
Exercises
page
120
Problem
number
:
1(e)
Date
solved
:
Thursday, October 02, 2025 at 09:37:13 AM
CAS
classification
:
[[_Emden, _Fowler]]
ode:=t^2*diff(diff(x(t),t),t)-7*t*diff(x(t),t)+16*x(t) = 0; dsolve(ode,x(t), singsol=all);
ode=t^2*D[x[t],{t,2}]-7*t*D[x[t],t]+16*x[t]==0; ic={}; DSolve[{ode,ic},x[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") ode = Eq(t**2*Derivative(x(t), (t, 2)) - 7*t*Derivative(x(t), t) + 16*x(t),0) ics = {} dsolve(ode,func=x(t),ics=ics)