Internal
problem
ID
[14440]
Book
:
A
First
Course
in
Differential
Equations
by
J.
David
Logan.
Third
Edition.
Springer-Verlag,
NY.
2015.
Section
:
Chapter
2,
Second
order
linear
equations.
Section
2.4.1
Cauchy-Euler
equations.
Exercises
page
120
Problem
number
:
1(f)
Date
solved
:
Thursday, October 02, 2025 at 09:37:14 AM
CAS
classification
:
[[_Emden, _Fowler], [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]
With initial conditions
ode:=t^2*diff(diff(x(t),t),t)+3*t*diff(x(t),t)-8*x(t) = 0; ic:=[x(1) = 0, D(x)(1) = 2]; dsolve([ode,op(ic)],x(t), singsol=all);
ode=t^2*D[x[t],{t,2}]+3*t*D[x[t],t]-8*x[t]==0; ic={x[1]==0,Derivative[1][x][1 ]==2}; DSolve[{ode,ic},x[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") ode = Eq(t**2*Derivative(x(t), (t, 2)) + 3*t*Derivative(x(t), t) - 8*x(t),0) ics = {x(1): 0, Subs(Derivative(x(t), t), t, 1): 2} dsolve(ode,func=x(t),ics=ics)