58.9.1 problem 1

Internal problem ID [14680]
Book : Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.
Section : Chapter 4, Section 4.1. Basic theory of linear differential equations. Exercises page 124
Problem number : 1
Date solved : Thursday, October 02, 2025 at 09:50:10 AM
CAS classification : [[_Emden, _Fowler]]

\begin{align*} x^{2} y^{\prime \prime }-4 x y^{\prime }+4 y&=0 \end{align*}

Using reduction of order method given that one solution is

\begin{align*} y&=x \end{align*}
Maple. Time used: 0.003 (sec). Leaf size: 13
ode:=x^2*diff(diff(y(x),x),x)-4*x*diff(y(x),x)+4*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = x \left (c_1 \,x^{3}+c_2 \right ) \]
Mathematica. Time used: 0.007 (sec). Leaf size: 16
ode=x^2*D[y[x],{x,2}]-4*x*D[y[x],x]+4*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to x \left (c_2 x^3+c_1\right ) \end{align*}
Sympy. Time used: 0.088 (sec). Leaf size: 10
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*Derivative(y(x), (x, 2)) - 4*x*Derivative(y(x), x) + 4*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = x \left (C_{1} + C_{2} x^{3}\right ) \]