Internal
problem
ID
[14681]
Book
:
Differential
Equations
by
Shepley
L.
Ross.
Third
edition.
John
Willey.
New
Delhi.
2004.
Section
:
Chapter
4,
Section
4.1.
Basic
theory
of
linear
differential
equations.
Exercises
page
124
Problem
number
:
2
Date
solved
:
Thursday, October 02, 2025 at 09:50:10 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using reduction of order method given that one solution is
ode:=(1+x)^2*diff(diff(y(x),x),x)-3*(1+x)*diff(y(x),x)+3*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=(x+1)^2*D[y[x],{x,2}]-3*(x+1)*D[y[x],x]+3*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((x + 1)**2*Derivative(y(x), (x, 2)) - (3*x + 3)*Derivative(y(x), x) + 3*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)