Internal
problem
ID
[14682]
Book
:
Differential
Equations
by
Shepley
L.
Ross.
Third
edition.
John
Willey.
New
Delhi.
2004.
Section
:
Chapter
4,
Section
4.1.
Basic
theory
of
linear
differential
equations.
Exercises
page
124
Problem
number
:
3
Date
solved
:
Thursday, October 02, 2025 at 09:50:10 AM
CAS
classification
:
[_Gegenbauer]
Using reduction of order method given that one solution is
ode:=(x^2-1)*diff(diff(y(x),x),x)-2*x*diff(y(x),x)+2*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=(x^2-1)*D[y[x],{x,2}]-2*x*D[y[x],x]+2*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-2*x*Derivative(y(x), x) + (x**2 - 1)*Derivative(y(x), (x, 2)) + 2*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False