Internal
problem
ID
[15329]
Book
:
APPLIED
DIFFERENTIAL
EQUATIONS
The
Primary
Course
by
Vladimir
A.
Dobrushkin.
CRC
Press
2015
Section
:
Chapter
5.6
Laplace
transform.
Nonhomogeneous
equations.
Problems
page
368
Problem
number
:
Problem
2(d)
Date
solved
:
Thursday, October 02, 2025 at 10:11:41 AM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
Using Laplace method With initial conditions
ode:=diff(diff(y(t),t),t)-4*diff(y(t),t)+4*y(t) = t^2*exp(2*t); ic:=[y(0) = 1, D(y)(0) = 2]; dsolve([ode,op(ic)],y(t),method='laplace');
ode=D[y[t],{t,2}]-4*D[y[t],t]+4*y[t]==t^2*Exp[2*t]; ic={y[0]==1,Derivative[1][y][0] ==2}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(-t**2*exp(2*t) + 4*y(t) - 4*Derivative(y(t), t) + Derivative(y(t), (t, 2)),0) ics = {y(0): 1, Subs(Derivative(y(t), t), t, 0): 2} dsolve(ode,func=y(t),ics=ics)