Internal
problem
ID
[15330]
Book
:
APPLIED
DIFFERENTIAL
EQUATIONS
The
Primary
Course
by
Vladimir
A.
Dobrushkin.
CRC
Press
2015
Section
:
Chapter
5.6
Laplace
transform.
Nonhomogeneous
equations.
Problems
page
368
Problem
number
:
Problem
2(e)
Date
solved
:
Thursday, October 02, 2025 at 10:11:41 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using Laplace method With initial conditions
ode:=diff(diff(y(t),t),t)+9*y(t) = exp(-2*t); ic:=[y(0) = -2/13, D(y)(0) = 1/13]; dsolve([ode,op(ic)],y(t),method='laplace');
ode=D[y[t],{t,2}]+9*y[t]==Exp[-2*t]; ic={y[0]==-2/13,Derivative[1][y][0] ==1/13}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(9*y(t) + Derivative(y(t), (t, 2)) - exp(-2*t),0) ics = {y(0): -2/13, Subs(Derivative(y(t), t), t, 0): 1/13} dsolve(ode,func=y(t),ics=ics)