Internal
problem
ID
[15437]
Book
:
Differential
Equations,
Linear,
Nonlinear,
Ordinary,
Partial.
A.C.
King,
J.Billingham,
S.R.Otto.
Cambridge
Univ.
Press
2003
Section
:
Chapter
6.
Laplace
transforms.
Problems
page
172
Problem
number
:
6.3
(d)
Date
solved
:
Thursday, October 02, 2025 at 10:14:09 AM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
Using Laplace method With initial conditions
ode:=diff(diff(y(t),t),t)-4*diff(y(t),t)+4*y(t) = piecewise(0 <= t and t <= 3,t,3 < t,t+2); ic:=[y(0) = -2, D(y)(0) = 1]; dsolve([ode,op(ic)],y(t),method='laplace');
ode=D[y[t],{t,2}]-4*D[y[t],t]+4*y[t]==Piecewise[{{t,0<=t<=3},{t+2,3<t}}]; ic={y[0]==-2,Derivative[1][y][0] ==1}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(-Piecewise((t, (t >= 0) & (t <= 3)), (t + 2, t > 3)) + 4*y(t) - 4*Derivative(y(t), t) + Derivative(y(t), (t, 2)),0) ics = {y(0): -2, Subs(Derivative(y(t), t), t, 0): 1} dsolve(ode,func=y(t),ics=ics)