Internal
problem
ID
[15438]
Book
:
Differential
Equations,
Linear,
Nonlinear,
Ordinary,
Partial.
A.C.
King,
J.Billingham,
S.R.Otto.
Cambridge
Univ.
Press
2003
Section
:
Chapter
6.
Laplace
transforms.
Problems
page
172
Problem
number
:
6.3
(e)
Date
solved
:
Thursday, October 02, 2025 at 10:14:10 AM
CAS
classification
:
system_of_ODEs
With initial conditions
ode:=[diff(x(t),t)+x(t)+diff(y(t),t) = 0, diff(x(t),t)-x(t)+2*diff(y(t),t) = exp(-t)]; ic:=[x(0) = 0, y(0) = 1]; dsolve([ode,op(ic)]);
ode={D[x[t],t]+x[t]+D[y[t],t]==0,D[x[t],t]-x[t]+2*D[y[t],t]==Exp[-t]}; ic={x[0]==0,y[0]==1}; DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") ode=[Eq(x(t) + Derivative(x(t), t) + Derivative(y(t), t),0),Eq(-x(t) + Derivative(x(t), t) + 2*Derivative(y(t), t) - exp(-t),0)] ics = {x(0): 0, y(0): 1} dsolve(ode,func=[x(t),y(t)],ics=ics)