62.3.6 problem 6.11

Internal problem ID [15440]
Book : Differential Equations, Linear, Nonlinear, Ordinary, Partial. A.C. King, J.Billingham, S.R.Otto. Cambridge Univ. Press 2003
Section : Chapter 6. Laplace transforms. Problems page 172
Problem number : 6.11
Date solved : Thursday, October 02, 2025 at 10:14:11 AM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} c v^{\prime \prime }+\frac {v^{\prime }}{r}+\frac {v}{L}&=\delta \left (t -1\right )-\delta \left (t \right ) \end{align*}

Using Laplace method

Maple. Time used: 0.175 (sec). Leaf size: 272
ode:=c*diff(diff(v(t),t),t)+1/r*diff(v(t),t)+v(t)/L = Dirac(t-1)-Dirac(t); 
dsolve(ode,v(t),method='laplace');
 
\[ v = {\mathrm e}^{-\frac {t}{2 r c}} \cosh \left (\frac {t \sqrt {L \left (-4 r^{2} c +L \right )}}{2 L r c}\right ) v \left (0\right )+\frac {\left (\left (-{\mathrm e}^{-\frac {-1+t -\frac {\sqrt {L \left (-4 r^{2} c +L \right )}}{L}}{2 r c}}+{\mathrm e}^{-\frac {-1+t +\frac {\sqrt {L \left (-4 r^{2} c +L \right )}}{L}}{2 r c}}\right ) \cosh \left (\frac {t \sqrt {L \left (-4 r^{2} c +L \right )}}{2 L r c}\right ) \operatorname {Heaviside}\left (t -1\right ) r +\left ({\mathrm e}^{-\frac {t}{2 r c}} \left (2 v^{\prime }\left (0\right ) c r -2 r +v \left (0\right )\right )+r \left ({\mathrm e}^{-\frac {-1+t +\frac {\sqrt {L \left (-4 r^{2} c +L \right )}}{L}}{2 r c}}+{\mathrm e}^{-\frac {-1+t -\frac {\sqrt {L \left (-4 r^{2} c +L \right )}}{L}}{2 r c}}\right ) \operatorname {Heaviside}\left (t -1\right )\right ) \sinh \left (\frac {t \sqrt {L \left (-4 r^{2} c +L \right )}}{2 L r c}\right )\right ) \sqrt {L \left (-4 r^{2} c +L \right )}}{-4 r^{2} c +L} \]
Mathematica. Time used: 0.077 (sec). Leaf size: 72
ode=c*D[v[t],{t,2}]+1/r*D[v[t],t]+v[t]/L==D[UnitStep[t-1]-UnitStep[t] ,t]; 
ic={}; 
DSolve[{ode,ic},v[t],t,IncludeSingularSolutions->True]
 
\begin{align*} v(t)&\to e^{-\frac {\frac {t \sqrt {L-4 c r^2}}{\sqrt {L}}+t}{2 c r}} \left (c_2 e^{\frac {t \sqrt {L-4 c r^2}}{c \sqrt {L} r}}+c_1\right ) \end{align*}
Sympy. Time used: 0.914 (sec). Leaf size: 284
from sympy import * 
t = symbols("t") 
c = symbols("c") 
r = symbols("r") 
L = symbols("L") 
v = Function("v") 
ode = Eq(c*Derivative(v(t), (t, 2)) - Derivative(-Heaviside(t) + Heaviside(t - 1), t) + Derivative(v(t), t)/r + v(t)/L,0) 
ics = {} 
dsolve(ode,func=v(t),ics=ics)
 
\[ v{\left (t \right )} = C_{1} e^{\frac {t \left (-1 + \frac {\sqrt {L \left (L - 4 c r^{2}\right )}}{L}\right )}{2 c r}} + C_{2} e^{- \frac {t \left (1 + \frac {\sqrt {L \left (L - 4 c r^{2}\right )}}{L}\right )}{2 c r}} - \frac {L r e^{\frac {- t + 1 - \frac {t \sqrt {L \left (L - 4 c r^{2}\right )}}{L} + \frac {\sqrt {L \left (L - 4 c r^{2}\right )}}{L}}{2 c r}} \theta \left (t - 1\right )}{\sqrt {L \left (L - 4 c r^{2}\right )}} + \frac {L r e^{\frac {- t + 1 + \frac {t \sqrt {L \left (L - 4 c r^{2}\right )}}{L} - \frac {\sqrt {L \left (L - 4 c r^{2}\right )}}{L}}{2 c r}} \theta \left (t - 1\right )}{\sqrt {L \left (L - 4 c r^{2}\right )}} - \frac {L r e^{\frac {t \left (-1 + \frac {\sqrt {L \left (L - 4 c r^{2}\right )}}{L}\right )}{2 c r}} \theta \left (t\right )}{\sqrt {L \left (L - 4 c r^{2}\right )}} + \frac {L r e^{- \frac {t \left (1 + \frac {\sqrt {L \left (L - 4 c r^{2}\right )}}{L}\right )}{2 c r}} \theta \left (t\right )}{\sqrt {L \left (L - 4 c r^{2}\right )}} \]