Internal
problem
ID
[15439]
Book
:
Differential
Equations,
Linear,
Nonlinear,
Ordinary,
Partial.
A.C.
King,
J.Billingham,
S.R.Otto.
Cambridge
Univ.
Press
2003
Section
:
Chapter
6.
Laplace
transforms.
Problems
page
172
Problem
number
:
6.5
Date
solved
:
Thursday, October 02, 2025 at 10:14:11 AM
CAS
classification
:
[_erf]
Using Laplace method With initial conditions
ode:=diff(diff(x(t),t),t)+2*t*diff(x(t),t)-4*x(t) = 1; ic:=[x(0) = 0, D(x)(0) = 0]; dsolve([ode,op(ic)],x(t),method='laplace');
ode=D[x[t],{t,2}]+2*t*D[x[t],t]-4*x[t]==1; ic={x[0]==0,Derivative[1][x][0] ==0}; DSolve[{ode,ic},x[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") ode = Eq(2*t*Derivative(x(t), t) - 4*x(t) + Derivative(x(t), (t, 2)) - 1,0) ics = {x(0): 0, Subs(Derivative(x(t), t), t, 0): 0} dsolve(ode,func=x(t),ics=ics)
NotImplementedError : The given ODE Derivative(x(t), t) - (4*x(t) - Derivative(x(t), (t, 2)) + 1)/(2*t) cannot be solved by the factorable group method