Internal
problem
ID
[15797]
Book
:
Ordinary
Differential
Equations
by
Charles
E.
Roberts,
Jr.
CRC
Press.
2010
Section
:
Chapter
4.
N-th
Order
Linear
Differential
Equations.
Exercises
4.4,
page
218
Problem
number
:
1
Date
solved
:
Thursday, October 02, 2025 at 10:28:07 AM
CAS
classification
:
[[_high_order, _linear, _nonhomogeneous]]
ode:=diff(diff(diff(diff(y(x),x),x),x),x)-6*diff(diff(diff(y(x),x),x),x)+13*diff(diff(y(x),x),x)-12*diff(y(x),x)+4*y(x) = 2*exp(x)-4*exp(2*x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,4}]-6*D[y[x],{x,3}]+13*D[y[x],{x,2}]-12*D[y[x],x]+4*y[x]==2*Exp[x]-4*Exp[2*x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(4*y(x) + 4*exp(2*x) - 2*exp(x) - 12*Derivative(y(x), x) + 13*Derivative(y(x), (x, 2)) - 6*Derivative(y(x), (x, 3)) + Derivative(y(x), (x, 4)),0) ics = {} dsolve(ode,func=y(x),ics=ics)