Internal
problem
ID
[15798]
Book
:
Ordinary
Differential
Equations
by
Charles
E.
Roberts,
Jr.
CRC
Press.
2010
Section
:
Chapter
4.
N-th
Order
Linear
Differential
Equations.
Exercises
4.4,
page
218
Problem
number
:
2
Date
solved
:
Thursday, October 02, 2025 at 10:28:08 AM
CAS
classification
:
[[_high_order, _missing_y]]
ode:=diff(diff(diff(diff(y(x),x),x),x),x)+4*diff(diff(y(x),x),x) = 24*x^2-6*x+14+32*cos(2*x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,4}]+4*D[y[x],{x,2}]==24*x^2-6*x+14+32*Cos[2*x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-24*x**2 + 6*x - 32*cos(2*x) + 4*Derivative(y(x), (x, 2)) + Derivative(y(x), (x, 4)) - 14,0) ics = {} dsolve(ode,func=y(x),ics=ics)