67.4.3 problem 5.1 (c)

Internal problem ID [16372]
Book : Ordinary Differential Equations. An introduction to the fundamentals. Kenneth B. Howell. second edition. CRC Press. FL, USA. 2020
Section : Chapter 5. LINEAR FIRST ORDER EQUATIONS. Additional exercises. page 103
Problem number : 5.1 (c)
Date solved : Friday, October 03, 2025 at 12:37:41 AM
CAS classification : [_Riccati]

\begin{align*} y^{\prime }-x y^{2}&=\sqrt {x} \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 45
ode:=diff(y(x),x)-x*y(x)^2 = x^(1/2); 
dsolve(ode,y(x), singsol=all);
 
\[ y = -\frac {\operatorname {BesselY}\left (-\frac {3}{7}, \frac {4 x^{{7}/{4}}}{7}\right ) c_1 +\operatorname {BesselJ}\left (-\frac {3}{7}, \frac {4 x^{{7}/{4}}}{7}\right )}{x^{{1}/{4}} \left (\operatorname {BesselY}\left (\frac {4}{7}, \frac {4 x^{{7}/{4}}}{7}\right ) c_1 +\operatorname {BesselJ}\left (\frac {4}{7}, \frac {4 x^{{7}/{4}}}{7}\right )\right )} \]
Mathematica. Time used: 0.134 (sec). Leaf size: 273
ode=D[y[x],x]-x*y[x]^2==Sqrt[x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to -\frac {x^{7/4} \operatorname {Gamma}\left (\frac {11}{7}\right ) \operatorname {BesselJ}\left (-\frac {3}{7},\frac {4 x^{7/4}}{7}\right )-x^{7/4} \operatorname {Gamma}\left (\frac {11}{7}\right ) \operatorname {BesselJ}\left (\frac {11}{7},\frac {4 x^{7/4}}{7}\right )+2 \operatorname {Gamma}\left (\frac {11}{7}\right ) \operatorname {BesselJ}\left (\frac {4}{7},\frac {4 x^{7/4}}{7}\right )+c_1 x^{7/4} \operatorname {Gamma}\left (\frac {3}{7}\right ) \operatorname {BesselJ}\left (-\frac {11}{7},\frac {4 x^{7/4}}{7}\right )-c_1 x^{7/4} \operatorname {Gamma}\left (\frac {3}{7}\right ) \operatorname {BesselJ}\left (\frac {3}{7},\frac {4 x^{7/4}}{7}\right )+2 c_1 \operatorname {Gamma}\left (\frac {3}{7}\right ) \operatorname {BesselJ}\left (-\frac {4}{7},\frac {4 x^{7/4}}{7}\right )}{2 x^2 \left (\operatorname {Gamma}\left (\frac {11}{7}\right ) \operatorname {BesselJ}\left (\frac {4}{7},\frac {4 x^{7/4}}{7}\right )+c_1 \operatorname {Gamma}\left (\frac {3}{7}\right ) \operatorname {BesselJ}\left (-\frac {4}{7},\frac {4 x^{7/4}}{7}\right )\right )}\\ y(x)&\to -\frac {x^{7/4} \operatorname {BesselJ}\left (-\frac {11}{7},\frac {4 x^{7/4}}{7}\right )-x^{7/4} \operatorname {BesselJ}\left (\frac {3}{7},\frac {4 x^{7/4}}{7}\right )+2 \operatorname {BesselJ}\left (-\frac {4}{7},\frac {4 x^{7/4}}{7}\right )}{2 x^2 \operatorname {BesselJ}\left (-\frac {4}{7},\frac {4 x^{7/4}}{7}\right )} \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-sqrt(x) - x*y(x)**2 + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE -sqrt(x) - x*y(x)**2 + Derivative(y(x), x) cannot be solved by the lie group method